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We have obtained certain theorems on the linear integrals of a mechanical sys- 

tem with n degrees of freedom and on their dependency on the solutions of the 
Killing equations and the coordinates of the generalized force. 

We consider a mechanical system with n degrees of freedom with kinetic energy 

T = l/s g+qA’ qp. 

and generalized forces Q,. Here and subsequently a dot as a superscript denotes the de- 
rivative with respect to time 1. The fulfillment of the conditions [l] 

V,S, + V,5, = 0 (1) 

4”Q, = 0 (2) 

is necessary and sufficient for the existence of a linear integral of the system E;,q* =C . 

The kinetic energy defines a space V,, with the metric 

ds3 _= 2T dt2 = g J+ 
dq’dql* 

In this space every solution of the Killing equation (1) defines a one-parameter group 
of motions G,. All solutions 4,” (a = 1, 2, 3,...,r) of Eq. (1) define a group G, called 

the group of motions in V,. After a transformation of group G1 the point M(d) goes 
into M’(q’i) whose coordinates are determined from the formula @] 

xi ((3) 
q ‘i = pi + TCi (q) + ; 4’ (9) ,,3- + . . . 

Here T is a parameter of the group. The collection of successive positions of the image 

M(& defines a trajectory of the group. An infinitesimal transformation of the group is 

given by the formula 
q’i = qi + ci (9) 6% (4) 

Condition (2) shows: in order that sxqx = c be a linear integral it is necessary that the 

displacement along a trajectory of group G, be perpendicular to the vector of general- 

ized force with coordinates Q” 

Let us consider the case when all Q, = D.Then (2) is fulfilled identically and every 
solution of the Killing equation yields one linear integral of the system. This makes it 
possible to carry over to this case certain theorems from Eisenhart’s monograph [2]. From 

Theorem 53.1 presented in p] we obtain: 
Theorem 1. A mechanical system moving by inertia (Q, = 0) can have no more 

than i/z n(n + 1) linear integrals and, moreover, the number of integrals equals I/2 n 

(n - I), when V, is a Riemann space with constant curvature. 

112 



Classification of linear Integrals of a mechanical system 113 

From the Fubini theorem @] we obtain: 
Theorem 2. A mechanical system with n > 2 degrees of freedom, moving by 

inertia (Q, = 0), cannot have ‘/zn (n + 1) - 1 linear integrals. 

Let us consider the case when at least one Q, # 0. Let G,. be the group of motions in 
V,, and c ax, a = 1,2,... , r , the system of vectors of the group. The group symbols are 

X,? = E,” af/% x 
Each vector 4” = ~a&*, where co are constants, yields a one-parameter group of mot- 
ions and also is a solution of the Killing equation (1). All solutions of this equation are 
yielded in just the same fashion. In this case condition (2) takes the form 

c”&“Q, = 0 (9 

Every solution of Eq. (l), satisfying condition (5). yields a linear integral of the system. 
Let us consider the case of a conservative mechanical system. Then relation (2) takes 

the form 

L x $* = xau = 0 
(6) 

As is known p], for a suitable choice of the group parameter the trajectory equations 
have the form dqi / dT = Ei From condition (6) we obtain 

This shows that if 4,” is a solution of Eq. (l), satisfying condition (2) in the form (7). 
then the trajectory of the group defined by E,,” is a line on the surface u = const. 

Let 4aX 1 m L 1,2,..., p be a system of vectors satisfying the conditions indicated, 

which cannot be extended further. Let Ea*px = cl and cbXpx = cz be two linear integrals 
in which we have set px = qxsq”. For the group symbols X, and Xb we have 

[X0, Xa] f = CibXef (a, b, e = 1, 2, . . . t r) @I 
From (8) we obtain 

where c& are the structure constants of G,. As was shown in p], c&Se’ is once again 

a vector of group G,. Furthermore, 

Thus we have obtained that if EaXpx = crand tbXpx = ~2 are linear integrals of the sys- 
tem, then cgbg:px = c3 also is a linear integral. 

For the function u we can write, from (8), 

[Xa, XJ u = c&X* u (a. b=i,2 ,..., p; 1=1,2 ,..., 4 

From (10) we have [X,,Xb]L” = 0. On the other hand,X,u = 0 (m = 1,2,...,p), so that 
CzbX@ = 0 W = P + I,..., r). The assumption that even one of the czb p 0 would 
lead to the conclusion that c~b~~px = c is a linear integral and, consequently, &,<G 
can be represented as a linear combination of the vectors cz, n = 1, 2,... ,p with constant 
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coefficients. Then 

c:tJ, y = t)$j&* (m=i,2,...,p; q=p+i,. ..,r) (11) 

where 0’$, are constants. The latter is impossible since ?,,” (a = 1, 2,. .., r) are inde- 
pendent vectors with constant coefficients. Finally 

[Xa, XJ = &x, ia, b = 1, 2, . . . , r; f = 1, 2, , p) (12) 

Consequently , EIX, &‘, . . . ,fpX are the vectors of a subgroup G, of group G,. The order 
of group GP determines the number of linear integrals of a conservative mechanical 

system. This group is intransitive and u = const is its invariant manifold. The order 
p of the group does not exceed ‘/z n (n - 1). We say about the group G, and about an 

arbitrary subgroup G, of it that they are induced in G, by the function u = collst. Con- 

versely, every intransitive subgroup of group ( Zr in V, can be looked upon as an induced 
group under a suitable choice of the force function (I, 

Let G, be an intransitive subgroup of group G, with the base vectors ‘$*,SsX,..., cPx 
By p,, we denote the total rank of the matrix M = // [f” 1) (f = 1, 2,.. . p). Let 
q(q) = Cl. 447) = C29..‘7 ~n_,,(d = en-p, be invariant manifolds of broup G,. Let us 

consider an arbitrary function 4, (uI,uz,... ,u,_~~ ); Et” are some of the vectors of group 
G,. Then it is easy to see that condition (2) is fulfilled 

a4, aup 
aup -&i 5,” = a; x,up = 0 

P 
(13) 

Since conditions (1) and (2) are fulfilled for an arbitrary vector St” from G,, we see that 
the groups ?& indeed is induced in group G, by the function 4, = const. 

Let us consider the motion of a point with mass m = 1 in a three-dimensional Eucli- 

dean space. In this case the group of motions is six-parametric. Its vectors may be 

&(I, 0, O), MO, 1, O), MO. 0, 1) (14) 

Sd-Y, 5, O), fib (z, 0, -4, Fs (0, -6 Y) 
The vectors El, csr Es define an intransitive group called the rotation group. The total 
rank of the matrix formed by them [Z] equals two and, consequently, there exists one 

invariant manifold. namely, ~2 + y” -+- zz = c. Then, if the force function has the form 

u(z2 + y2 + z2), the mechanical system has the linear integrals 

- yz’ + zy- = Cl, ~2’ - XZ’ = c2 - zy’ + z’y = Ca 

Everything we have said for the conservative system can be carlied over to mechanical 
systems for which Q, = pauia4x (15) 

Indeed, for such systems conditions (1) and (a), after cancelling p in Eq. (15), lead to 
corresponding conditions for the system in which Q, = au. / 84’. Consequently, both 
systems have like linear integrals. If v, are the coordinates of the generalized force, 
then as is well known [3], for Q, to have form (15) it is necessary and sufficient to ful- 

fill the condition 
Q rot Q = 0, V = (QL Qz, Q4 (16) 

Let us consider the case when G, is an Abelian group. Then we can make a change 
of variables p] so that 

5,” = a,% @=I,2 )..., c; XEi.2 (..., n) (17) 

We write condition (1) in the form 
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Having substituted 4,,% from (17) 

We obtained that gij = gij (qe+‘, 

au/aqp = 0, 

we find 

agij / aqp = 0 09) 

. > q”). From condition (2) we finally have 

arpqp= 0 (p = 1,2,...,e) (‘Jo, 

Condition (20) shows that q’, ’ q ,. ,qe are ignorable coordinates [4L From the results of 

[l] it follows that if q’, q2,..., qe are ignorable coordinates, then fpX = 6,“. By Theorem 
51.6 of p] the latter define an Abelian group of motions since IX,, xbl = O.Thus. we 

have proved the following theorem: 
Theorem 3. For the possibility of a correspondence of the linear integrals of a 

given mechanical system with ignorable coordinates, it is necessary and sufficient that 

the group G, induced by the function u = const,corresponding to these integrals, be 
Abelian group. 

In the example analyzed above let u = ~(9 + y2).Then g, and 5, define a subgroup 
G, induced by u = const. Since lx,, x,] = 0, this group is Abelian group. The linear 

integrals have the form 
2’ = Cl xy’ - yx’ = c2 (22) 

In accordance with Theorem 3 we can choose new parameters for which 4”a = 6’(a (it 
suffices to make the change of variables x = r cos (I, and y = rsin q). 

Corollary. By a suitable change of variables every linear integral can be transfor- 

med into an ignorable coordinate. 

This assertion is well-known in analytical mechanics as Levy’s theorem, proved in [4] 
with the aid of the theory of contact transformations. 

Let us consider a mechanical system with three degrees of freedom. The expression 
for kinetic energy defines a Riemann space Vs. Let it admit of a group G,. Then we 

can take the line element in the form [2] 

ds2 = 2Tdt2 = gijdqzdqj + (dq3)’ (i, j = 1, 2) (22) 

Let u = IL($). Then group G, can be looked upon as having been induced by the funcr- 
ion U(?‘“) = cdnst. The following two cases are possible: 

1. c, is an Abelian group. As follows from Theorem 3, the group vectors may be 
&(I, O$). &(U, i,O). In this case g,, = gh,(rl”) and, since u = u(q”), we have the ignor- 
able coordinates q’ and q’. 

2. G, is not an Abelian group. In this case the relations 

[Xi, &If = x1/ 

Qll = a7 g,, = aq’ + p, g,, = 4q’)2 + 13q1 + Y (23) 

are fulfilled, where CL, 6, y depend on Q”. In this case the vectors of the group are 

&(eQ’, 0, 0), E;2 (0, 1, 0). The system has the two linear integrals 

p, exp (--q2) = c, Pa = % (24) 

We see that the second coordinate is ignorable while the first is a latent ignorable co- 
ordinate. Note that in Case 2 it is impossible to make a change of variables such that 
both linear integrals would be ignorable coordinates. As is well known, for this it is 
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necessary that the group be transformable to an Abelian group. On the other hand, every 
group can be transformed by a change of variables to a group similar to it p], and, by 
a suitable choice of base vectors, the similar groups will have like structure constants. 
According to the above-cited corollary there exists a change of coordinate systems trans- 

forming the first coordinate to an ignorable coordinate, but here the second coordinate 
becomes a latent ignorable coordinate. 

BIBLIOGRAPHY 

1. Iliev, I., Linear integrals of a holonomic mechanical system. PMM Vol. 34, Np4, 
1970. 

2. Eisenhart, L. P., Continuous Groups of Transformations. Moscow, Izd. Inostr. 
Lit. , 1947. 

3. Neimark, Iu. 1. and Fufaev, N, A., Dynamics of Nonholonomic Systems. 
Moscow, “Nat&a”, 1967. 

4. Whittaker, E, T, , Analytical Dynamics. Moscow-Leningrad, Gostekhizdat. 1937. 

Translated by NHC 

UDC 534.013 

RESONANCE OSCILLATIONS OF ACOMPOUNDTORSIONPENDULUM 

PMM Vol. 36, pl, 1972, pp. 129-138 
B. I. CHESHANKOV 

(Sofia) 
(Received December 10, 1970) 

The.oscillations of conservative systems with two degrees of freedom under int- 

ernal resonance were examined in [l - 6-j. We investigate the resonance oscill- 

ations of one mechanical system and ascertain the features of its behavior. 

1, Consider the system shown in Fig.1. It consists of a disk attached to a thin elastic 
spindle having a coefficient of elasticity c. A compound pendulum rotates around an axis 

on belonging to the disk and perpendicular to the disk’s axis 
of rotation (in the Figure this axis is perpendicular to the plane 
of the diagram). We take it that 5, r~‘, 5 are the principal iner- 
tial axes and that the compound pendulum has the principal mo- 

ments of inertia It, I,, Ic with respect to them. I is the 
disk’s moment of inertia with respect to the axis of rotation. We 
denote the pendulum’s center of gravity by C ; the distance 
OC = e, (pl is the disk’s angle of rotation from the equilibrium 

position, ‘pz is the pendulum’s angle of deviation from the vertical, 
n is the mass of the pendulum. In this notation we have: 

for the system’s kinetic energy, 

Fig. 1. 
5 

T = I/% (I + I4 sin? cp~ + I, cos’? (~2) ‘pl‘? f I/J I,,(PJ’~ (1.1) 

for the system’s potential energy, 


